SIMPLIFYING AND PROVING ALGEBRICALLY

Pearson Edexcel - Monday 8 June 2020 - Paper 3 (Calculator) Higher Tier

1

15 Prove algebraically that 0.73 can be written as $\frac{11}{15}$

(Total for Question 15 is 2 marks)

Pearson Edexcel - Thursday 6 June 2019 - Paper 2 (Calculator) Higher Tier

2.

13 Show that $6 + \left[(x+5) \div \frac{x^2 + 3x - 10}{x-1} \right]$ simplifies to $\frac{ax-b}{cx-d}$ where a, b, c and d are integers.

(Total for Question 13 is 4 marks)

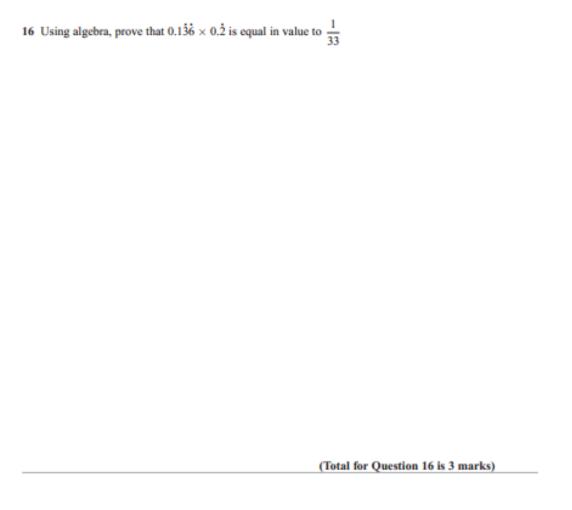
Pearson Edexcel - Tuesday 6 November 2018 - Paper 1 (Non-Calculator) Higher Tier

Prove algebraically that 0.256 can be written	as 127 495
	(Total for Question 16 is 3 marks)
on Edexeer Worlday 12 November	r 2018 - Paper 3 (Calculator) Higher Tier
son Euckeen Wonday 12 Novembe	r 2018 - Paper 3 (Calculator) Higher Tier
ove algebraically that the difference between the sq	
ove algebraically that the difference between the sq	
ove algebraically that the difference between the sq	
ove algebraically that the difference between the sq	
ove algebraically that the difference between the sq	
ove algebraically that the difference between the sq	
rove algebraically that the difference between the sq imbers is always a multiple of 8	
ove algebraically that the difference between the sq	
ove algebraically that the difference between the sq	

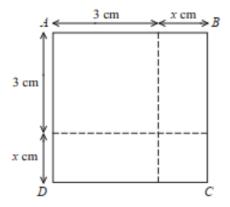
(Total for Question 15 is 3 marks)

Pearson Edexcel - Thursday 2 November 2017 - Paper 1 (Non-Calculator) Higher Tier
5.
15 $x = 0.436$ Prove algebraically that x can be written as $\frac{24}{55}$

(Total for Question 15 is 3 marks)


Pearson Edexcel - Thursday 2 November 2017 - Paper 1 (Non-Calculator) Higher Tier 6.

17 n is an integer.


Prove algebraically that the sum of $\frac{1}{2}n(n+1)$ and $\frac{1}{2}(n+1)(n+2)$ is always a square number.

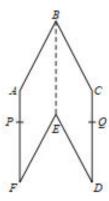
Pearson Edexcel - Wednesday 8 November 2017 - Paper 3 (Calculator) Higher Tier	
7.	
19 Prove algebraically that the straight line with equation $x - 2y = 10$ is a tangent to the circle with equation $x^2 + y^2 = 20$	

(Total for Question 19 is 5 marks)

Pearson Edexcel - Thursday 25 May 2017 - Paper 1 (Non-Calculator) Higher Tier 9.

The area of square ABCD is 10 cm2.

Show that $x^2 + 6x = 1$


(Total for Question 4 is 3 marks)

Pearson Edexcel - Thursday 25 May 2017 - Paper 1 (Non-Calculator) Higher Tier 10.

16	n is an integer greater than 1
	Prove algebraically that $n^2 - 2 - (n - 2)^2$ is always an even number.
	(Total for Question 16 is 4 marks)

Pearson Edexcel - Thursday 25 May 2017 - Paper 1 (Non-Calculator) Higher Tier 11.

22 The diagram shows a hexagon ABCDEF.

ABEF and CBED are congruent parallelograms where AB = BC = x cm. P is the point on AF and Q is the point on CD such that BP = BQ = 10 cm.

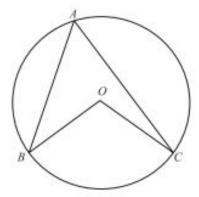
Given that angle $ABC = 30^{\circ}$,

prove that
$$\cos PBQ = 1 - \frac{(2 - \sqrt{3})}{200}x^2$$

(Total for Question 22 is 5 marks)

integers.	
Prove that the result is always a square number.	
	(Total for Question 17 is 3 marks)
Pearson Edexcei - Specimen Papers Set 2 - Pape	er 3 (Calculator) Higher Tier
Pearson Edexcel - Specimen Papers Set 2 - Pape 13.	er 3 (Calculator) Higher Tier
13.	
13.	
13.	
13.	
13.	
13.	
13.	
13.	
13.	
13.	
13.	
13.	
13.	
13.	
19 Prove algebraically that the recurring decimal 0.318 can b	

17 The product of two consecutive positive integers is added to the larger of the two


	to the sum of these two integers.
	(Total for Question 20 is 4 marks)
Pearson Edexcel	- Specimen Papers Set 1 - Paper 2 (Calculator) Higher Tier
15.	
3 Show that	$(3x-1)(x+5)(4x-3) = 12x^3 + 47x^2 - 62x + 15$
	$(3x-1)(x+5)(4x-3) = 12x^3 + 47x^2 - 62x + 15$
3 Show that	$(3x-1)(x+5)(4x-3) = 12x^3 + 47x^2 - 62x + 15$
3 Show that	$(3x-1)(x+5)(4x-3) = 12x^3 + 47x^2 - 62x + 15$
3 Show that	$(3x-1)(x+5)(4x-3) = 12x^3 + 47x^2 - 62x + 15$
3 Show that	$(3x-1)(x+5)(4x-3) = 12x^3 + 47x^2 - 62x + 15$
3 Show that	$(3x-1)(x+5)(4x-3) = 12x^3 + 47x^2 - 62x + 15$
3 Show that	$(3x-1)(x+5)(4x-3) = 12x^3 + 47x^2 - 62x + 15$
13 Show that	$(3x-1)(x+5)(4x-3) = 12x^3 + 47x^2 - 62x + 15$
13 Show that	$(3x-1)(x+5)(4x-3) = 12x^3 + 47x^2 - 62x + 15$
13 Show that	$(3x-1)(x+5)(4x-3) = 12x^3 + 47x^2 - 62x + 15$
13 Show that	$(3x-1)(x+5)(4x-3) = 12x^3 + 47x^2 - 62x + 15$
13 Show that for all values of x.	$(3x-1)(x+5)(4x-3) = 12x^3 + 47x^2 - 62x + 15$

Pearson Edexcel - Specimen Papers Set 1 - Paper 1 (Non-Calculator) Higher Tier

14.

Pearson Edexcel - Specimen Papers Set 1 - Paper 2 (Calculator) Higher Tier 16.

24 A, B and C are points on the circumference of a circle centre O.

Prove that angle BOC is twice the size of angle BAC.

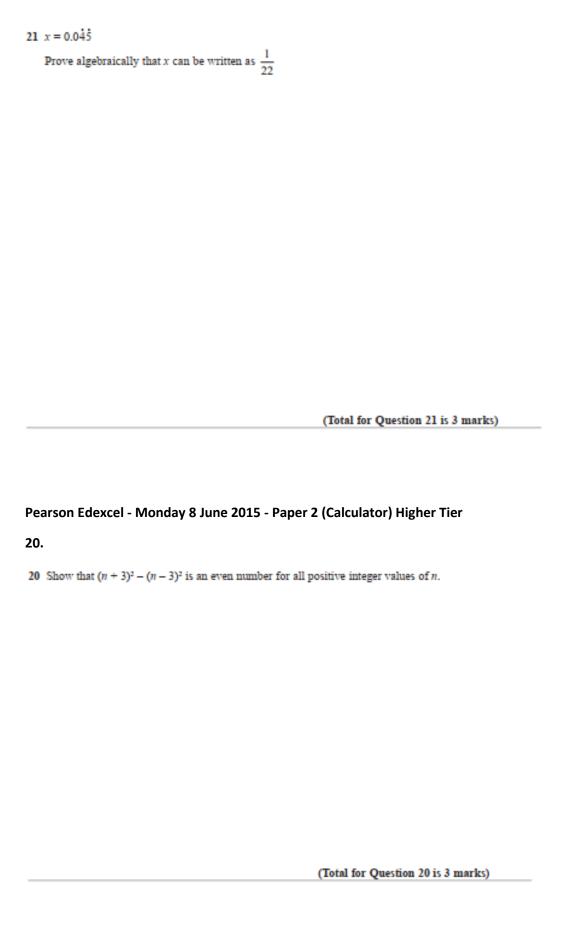
(Total for Question 24 is 4 marks)

14 Prove a	lgebraic	ally that
------------	----------	-----------

 $(2n + 1)^2 - (2n + 1)$ is an even number

for all positive integer values of n.

(Total for Question 14 is 3 marks)


Pearson Edexcel - Sample Paper 2 - (Calculator) Higher Tier

18.

15 Prove algebraically that the recurring decimal 0.25 has the value $\frac{23}{90}$

(Total for Question 15 is 2 marks)

Pearson Edexcel - Thursday 4 June 2015 - Paper 1 (Non-Calculator) Higher Tier 19.

21.		
21 (a) Expand and simplify	(y - 2)(y - 5)	
		(2)
*(b) Prove algebraically that	$(2n+1)^2 - (2n+1)$ is an even number	
for all positive integer v		

Pearson Edexcel - Friday 13 June 2014 - Paper 2 (Calculator) Higher Tier

Pearson Edexcel - Thursday 28 February 2013 - Paper 1 (Non-Calculator) Higher Tier 22.

(Total for Question 21 is 5 marks)

Prove algebraically that the difference between the squares of any two consecutive integers is equal to the sum of these two integers.

(Total for Question 21 is 4 marks)

Pearson Edexcel - Thursday 8 November 2012 - Paper 2 (Calculator) Higher Tier 23.

*25 The diagram shows the triangle PQR.

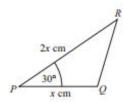


Diagram NOT accurately drawn

PQ = x cm PR = 2x cm Angle $QPR = 30^{\circ}$

The area of triangle $PQR = A \text{ cm}^2$

Show that $x = \sqrt{2A}$

Pearson Edexcel - Wednesday 13 June 2012 - Paper 2 (Calculator) Higher	Tier
24	

21 Prove that $(2n+3)^2-(2n-3)^2 \text{ is a multiple of } 8$

for all positive integer values of n.

(Total for Question 21 is 3 marks)

Pearson Edexcel - Thursday 5 November 2009 - Paper 3 (Non-Calculator) Higher Tier 25.

23. Prove that the recurring decimal $0.36 = \frac{4}{11}$

(Total 3 marks)

Pearson Edexcel - Thursday 5 November 2009 - Paper 3 (Non-Calculator) Higher Tier
26.
25. Prove, using algebra, that the sum of two consecutive whole numbers is always an odd number.

(Total 3 marks)

OCR GSCE – Thursday 5 November 2020 – Paper 5 (Non-Calculator) Higher Tier

27.

- 14 Simplify.
 - (a) $4a^{\frac{1}{2}} \times 3a^2$

(b) $\left(\frac{2a^2}{a^{-3}}\right)^3$

(a)[2]

(b)[3]

OCR GSCE – Tuesday 5 November 2019 – Paper 4 (Calculator) Higher Tier	
28.	

5	Multiply out and simplify.
	(4x+y)(x-3y)

.....[3]

OCR GSCE – Thursday 7 November 2019 – Paper 5 (Non-Calculator) Higher Tier 29.

3

Martina has answered some questions on algebra. In each question, she has made an error.							
Describe her error and	give the correct answer to each problem.						
(a) Question 1	Simplify. $2a \times a \times a$						
	Martina's answer 4a						
Martina's error is							
	Correct answer =[2]						
(b) Question 2	Simplify. $\frac{x^{10}}{x^2}$						
	Martina's answer x ⁵						
	Correct answer =[2]						
(c) Question 3	$s = ut + \frac{1}{2}at^2$						
	Find s when $u = 0$, $t = 5$ and $a = 6$.						
	Martina's solution $s = 0 \times 5 + \frac{1}{2} \times 6 \times 5^2$						
	s = 0 + 15 ²						
	s = 225						
	Correct answer =[2]						

OCR GSCE – Thursday 6 June 2019 – Paper 5 (Non-Calculator) Higher Tier 30.

2	(a)	Simplify fully.	
			$3a^8 \times 2a^8$
			2

(b) Solve. $\frac{6x-10}{5} = 1$

31.				
11	(a)	Simplify fully.	$\sqrt{200}$	
	(b)	Evaluate.	(a)	[2]
OCR	GSCE	: – Tuesday 2 Nove	(b)ember 2017 – Paper 4 (Calculator) Higher Tier	[1]
32.				
	2	(a) Simplify.		
		(i) $a^6 \div a^2$		
		(ii) $(b^5)^3$	(a)(i)	[1]
			(ii)	[1]
		(b) Factorise. $6x - x$	2	
			(b)	[1]

OCR GSCE – Thursday 6 June 2019 – Paper 5 (Non-Calculator) Higher Tier

OCR GSCE – Tuesday 2 November 2017 – Paper 4 (Calculator) Higher Tier	
33.	

--

$$x^2 - 6x + 15 = 3x - 5$$

(b) Expand and simplify.

$$(2x-1)(x+5)(3x-2)$$

OCR 34.	GSCE	— Т (uesd	ay 6 Novemb	er 2017 –	Paper 5 (N	lon - Cal	culator) Hig	her Tier		
18	Prov	e th	at the	e difference be	etween two	consecuti	ive squar	e numbers	is always	odd.	[4]
OCR	GSCE	- TI	hurso	day 8 June 20	17 – Pape	r 5 (Non - (Calculato	or) Higher T	ier		
35.											
	15	(a)	Simp	olify fully.							
			(i)	$\sqrt{50} + \sqrt{2}$							
							(a)(i)				[2]
			(ii)	$\frac{10}{\sqrt{6}}$							

(ii)[2]

		(b)	There are	two errors in Sam's	method for find	ding th	ne value of $64^{\frac{2}{3}}$ shown below.		
			Find the cube root of 64 and then multiply by 2. The cube root of 64 is 4 and then $4 \times 2 = 8$. The negative power makes the answer negative so answer equals -8.						
			Describe to	hese errors and ther	n give the corre	ect val	lue of $64^{\frac{2}{3}}$.		
					Correc	t valu	e[3]		
OCR (GSCE	– T	uesday 13	June 2017 – Pape	er 6 (Calculato	or) Hi	gher Tier		
36.									
	16	(a)	Simplify.	$\frac{3y^3}{v^{-4}}$					
				,		(a)	[1]		
		(b)	Write as a	single fraction in its	simplest form.	(4)	1.1		
				$\frac{3}{x-1} + \frac{4}{x+2}$					
						(b)	[3]		

OCR GSCE – Sample Papers – Paper 4 (Calculator) Higher Tier

20 (a) Express as a single fraction.

37.

$$\frac{m+1}{n+1} - \frac{m}{n}$$

Simplify your answer.

1-1	רסו
(a)	 12

(b) Using your answer to part (a), prove that if m and n are positive integers and m < n, then

$$\frac{m+1}{n+1} - \frac{m}{n} > 0.$$
 [2]

AQA GSCE – Tuesday 19 May 2	020 – Paper 1	(Non - Calcula	tor) Higher Tier

13	(a)	s and	t are	positive	integers
----	-----	-------	-------	----------	----------

38.

(x+s)(x-t) is expanded and simplified.

The answer is $x^2 + kx - 40$ where k is a positive integer.

work out the smallest possible value of x.	[2 marks]
Answer	

13 (b) Faisal tries to solve (x+2)(x-7)=0

Here is his working.

$$(x + 2) = 0$$
 or $(x - 7) = 0$
Answer $x = 2$ or $x = 7$

Give a reason why his answer is wrong.

[1 mark]

AQA GSCE – Thursday 8 June 2020 – Paper 3 (Calculator) Higher Tier 39.

26	Prove algebraically that	$3.47 = \frac{313}{90}$	[3 marks]

	Simplify fully $\frac{4x - 8x^2}{12x - 6}$	[3 marks]	
	Answer		
dS(CE – Tuesday 11 June 2019 – Paper 3 (Ca	lculator) Higher Tier	
	"3h2		
	Simplify fully $\frac{a^3b^2}{cd} \times \frac{c}{ab^5}$		[3 ma
	Simplify fully $\frac{a \cdot b}{c d} \times \frac{c}{a b^5}$		[3 ma
	Simplify fully $\frac{a \cdot b}{c d} \times \frac{c}{a b^5}$		[3 ma
	Simplify fully $\frac{a \cdot b}{c d} \times \frac{c}{a b^5}$ Answer		[3 ma

AQA GSCE – Tuesday 21 May 2019 – Paper 1 (Non - Calculator) Higher Tier

AQA G	SCE – Tuesday 6	November 2018	– Paper 1 (Non -	Calculator) Higher T	ier	
42.						
3	Simplify	$16a^2 \div a + 3a \times$: 2			
	Circle your	r answer.				[1 mark]
		22 <i>a</i>	8 <i>a</i>	38 <i>a</i>	2 <i>a</i>	
AQA G	SCE – Thursday	8 November 2018	3 – Paper 2 (Calcu	lator) Higher Tier		
43.						
20	n is a positi	ve integer.				
	Prove algeb	oraically that	$2n^2\left(\frac{3}{n}+n\right)+6n$	(n² - 1) is a cu	be number.	
			(")			arks]

44.					
22	Simplify fully	$\frac{x^5 - 4x^3}{3x - 6}$			[3 marks]
		Answer			

AQA GSCE – Thursday 8 November 2018 – Paper 2 (Calculator) Higher Tier

AQA GSCE – Monday 24 May 2018 – Paper 1 (Non - Calculator) Higher Tier

 $8a^2 + 2a$

Circle the expression that is equivalent to $3a - a \times 4a + 2a$

 $12a^2$ $5a - 4a^2$ $3a - 6a^2$

[1 mark]

45.

3

Show that, for	r u 4 1		
Snow that, for	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
$\frac{8x^2-4x+4}{4x+4}$	simplifies to the fo	rm ax + b	where a and b are integers
4 <i>x</i> +	4		Į

AQA GSCE – Thursday 7 June 2018 – Paper 2 (Calculator) Higher Tier

AQA GSCE – Thursday 7 June 2018	– Paper 2 (Calculator) Higher Tier
47.	

Prove algebraically that 2.75 converts to the fraction \(\frac{124}{45}\)

[3 marks]

AQA GSCE – Sample Paper 2 (Calculator) Higher Tier 48.

3 Circle the expression that is equivalent to $2a + 5a \times 4a - a$

[1 mark]

$$a + 20a^2$$

$$21a^{2}$$

$$28a^{2} - a$$

$$2a + 15a^2$$

AQA GSCE	– Tuesday 12 June 2018 – Paper 3 (Calculator) Higher Tier	
48.		
18	Show that, for $x \neq 0$	
	$\frac{x+4}{3x} - \frac{5}{2x}$	
	can be written in the form $\frac{ax+b}{cx}$ where a,b and c are integers. [3 ma	rks]
	Answer	

AQA GSCE – Thursday 6 November 2017 – Paper 2 (Calculator) Higher Tier 49.

11 Circle the expression that is equivalent to $\frac{3x^2}{6x^2 + 3}$

[1 mark]

$$\frac{x^2}{2x^2+3}$$

$$\frac{x^2}{6x^2+1}$$

$$\frac{x^2}{2x^2+1}$$

$$\frac{1}{2} + x^2$$

AQA GSCE – Wednesday 8 November 2017 – Paper 3 (Calculator) Higher Tier 50.

Multiply out and simplify $(x-8)^2$

[2 marks]

Answer _____

AQA GSCE – Wednesday 25 May 2017 – Paper 1 (Non - Calculator) Higher Tier 51.

1 Simplify $2^5 \times 2^3$ Circle your answer.

[1 mark]

4⁸

2⁸

2¹⁵

4¹⁵

AQA GSCE – Tuesday 13 June 2017 – Paper 3 (Calculator) Higher Tier

52.

27	Prove that	$x^2 + x + 1$	is always positive.	[3 marks]

AQA GSCE – Sample Paper 1 (Non - Calculator) Higher Tier

53.

26	Rationalise the denominator and simplify	10 3√5	[2 n	narks]
	Answer			